#include <bits/stdc++.h>
using namespace std;
const int lg = 21;
const int inf = 1e9;
class BinaryLifting {
public:
int n;
vector<int> a;
vector<vector<int>> jump;
vector<vector<int>> dp;
BinaryLifting(int n) {
this->n = n;
a.resize(n);
jump.resize(n, vector<int>(lg, -1));
dp.resize(n, vector<int>(lg, inf));
}
void prepare_lifts() {
// jump[i][j] is the node that you would reach if you take 2^j
// steps starting from node i.
for (int i = 0; i < n - 1; i++) {
jump[i][0] = i + 1;
dp[i][0] = min(a[i], a[i + 1]);
}
// Caution : Loop Order.
// You should iterate powers of 2 first.
for (int j = 1; j < lg; j++) {
for (int i = 0; i < n; i++) {
// Make the first half of the jump.
int mid = jump[i][j - 1];
if (mid == -1) {
continue;
}
// Make the second half of the jump.
jump[i][j] = jump[mid][j - 1];
dp[i][j] = min(dp[i][j - 1], dp[mid][j - 1]);
}
}
}
vector<int> split(int num) {
vector<int> res;
for (int i = 0; i < lg; i++) {
if ((1 << i) & num) {
res.push_back(i);
}
}
return res;
}
int walk(int src, int steps) {
vector<int> powers_of_2 = split(steps);
int now = src;
int res = a[src];
for (int p : powers_of_2) {
res = min(res, dp[now][p]);
now = jump[now][p];
if (now == -1) {
break;
}
}
return res;
}
int get_min(int l, int r) { return walk(l, r - l); }
};
void solve() {
int n, q;
cin >> n >> q;
BinaryLifting blift(n);
for (int i = 0; i < n; i++) {
cin >> blift.a[i];
}
blift.prepare_lifts();
for (int i = 0; i < q; i++) {
int l, r;
cin >> l >> r;
l--;
r--;
cout << blift.get_min(l, r) << "\n";
}
}
int main(int argc, char **argv) {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
}